
File Search And Delete Tree
by David Selwood

Recently, I needed two standard
procedures: one to delete a

directory and its sub-directories
and a second to search for specific
files in a directory and its sub-
directories. Scanning through the
Delphi manuals and Help I was
unable to find any procedures or
components that met these crite-
ria. I reached the same conclusion
from my Delphi books, apart from
one, where the algorithm left much
to be desired! So I set out to build
and test them myself.

Deleting A Directory Tree
A directory can contain files and
other directories (which may also
contain files and directories) and
this can iterate to any number of
directories and files. Because all
this is unknown in advance, the
problem lends itself to recursive
programming (routines that call
themselves).

I have implemented three stand-
ard procedures (since no return
results are required). If a directory
or file cannot be deleted then an

exception will be raised. The code
is in Listing 1.

Delete_Tree simply sets the ball
rolling and is called with the direc-
tory path of the directory you want
to delete. It appends a backslash
(\) to the directory passed, then
calls Delete_Directories_Files,
passing the directory path along.

Delete_Directories_Files is the
recursive section. It uses FindFirst
and FindNext to search the direc-
tory passed for any files or directo-
ries. If a file or directory is found
then Found_File_Or_Directory is
called, which will delete the file or
directory found. When no more
files or directories can be found in
the directory passed, the directory
is deleted. If the directory cannot
be deleted the error code is
checked. Error code 16 means that
the directory is in use, so we
change directory to the parent of
the current directory. We can then
delete the target directory without
error. If the error code is not 16 the
exception is re-raised.

Found_File_Or_Directory tests
the found file’s attribute to see if it
is a file or a directory. If it is a file

then it is deleted. If the file cannot
be deleted an exception is created
and raised so that the calling pro-
gram is made aware of the prob-
lem. Now this is the clever
recursive part: if a directory is
found then we simply call
Delete_Directories_Files with the
path of the sub-directory that
needs to be deleted. So the process
calls itself.

Searching For Files
The Delphi FindFirst and FindNext
routines only search for files in the
specified directory. We need a rou-
tine that recursively searches
directories, returning a list of files
found that match the search
criteria, including directory paths.

We could return the list of files
found by declaring a variable of
type TStringList in the calling ap-
plication, then passing this vari-
able to the file search routine, to be
filled with pathnames. The calling
application would be responsible
for freeing the memory used by the
TStringList variable.

Whilst this would work, it’s a bit
messy and it would, I decided, be

unit Deldirs;
interface
uses SysUtils,Controls,Forms,Dialogs;
procedure Delete_Tree(Dir_Path: string);
procedure Delete_Directories_Files(const Dir_Path: string);
procedure Found_File_Or_Directory(const SearchRec:
 TSearchRec; const Dir_Path: string);
implementation
{$I+} {make all run-time I/O errors into exceptions}
procedure Delete_Tree(Dir_Path: string);
var Old_Screen_Cursor: TCursor;
begin
 Old_Screen_Cursor:= Screen.Cursor;
 Screen.Cursor:= crHourGlass;
 Application.ProcessMessages;
 try
 if Copy(Dir_Path, Length(Dir_Path),1) <> ’\’ then
 Dir_Path:= Dir_Path + ’\’;
 Delete_Directories_Files(Dir_Path);
 finally
 Screen.Cursor:= Old_Screen_Cursor;
 end;
end; { Delete_Dirs}
procedure Delete_Directories_Files(const Dir_Path: string);
var
 SearchRec: TSearchRec;
 Directory_FileMask: string;
 DelDir: string;
 NewDir: string;
begin
 Directory_FileMask:= Dir_Path + ’*.*’;
 {Search for files & directories in current directory}
 if FindFirst(Directory_FileMask, faAnyFile, SearchRec) = 0
 then begin
 Found_File_Or_Directory(SearchRec, Dir_Path);
 while(FindNext (SearchRec)=0) do

 Found_File_Or_Directory (SearchRec, Dir_Path);
 end;
 FindClose (SearchRec);
 {Now remove the current directory,
 must remove backslash at end of Dir_Path}
 DelDir := LowerCase(Copy(Dir_Path, 1, Length(Dir_Path)-1));
 try
 RmDir(DelDir);
 except
 on E: EInOutError do
 {I/O Error 16: directory in use, so change directory}
 if E.ErrorCode = 16 then begin
 {Get parent directory}
 NewDir:= ExtractFilePath(DelDir);
 {Don’t want the last backslash}
 NewDir:= Copy(NewDir,1,Length(NewDir)-1);
 ChDir(NewDir);
 RmDir(DelDir);
 end else
 raise;
 end; { except }
end; { Delete_Directories_Files }
procedure Found_File_Or_Directory(const SearchRec:
 TSearchRec; const Dir_Path: string);
begin
 {Make sure its not a pointer to a parent directory}
 if((SearchRec.Name<>’.’) and (SearchRec.Name<>’..’)) then
 {See if file}
 if (SearchRec.Attr and faDirectory = 0) then begin
 if not DeleteFile(Dir_Path + SearchRec.Name) then
 raise Exception.Create(
 ’Can’’t delete file: Dir_Path + SearchRec.Name’);
 end else
 {Must be a directory, delete any files or directories}
 Delete_Directories_Files(Dir_Path+SearchRec.Name+’\’);
end; {Found_File_Or_Directory}
end.

➤ Listing 1

32 The Delphi Magazine Issue 14

much better to have a TFileList
object to encapsulate the whole
business of searching for and stor-
ing a list of files. Listing 2 shows the
code. TFileList has two public
methods, Create and Destroy, and a
public variable Files_Found of type
TStringList: it is these that provide
the interface. The Create method is
passed the directory to start the
search with, which should also in-
clude the search mask, and a
boolean flag, which if True indicates
that sub-directories should be
searched too. Listing 3 shows an
example of the class in use.

Search_Directory is the key
method. It first creates a tempo-
rary sorted list of all the files in the
directory passed to it that match
the file mask criteria. This list of
sorted files is then appended to the
unsorted Files_Found list. We don’t
sort it as, for example, the following
would not be sorted correctly:

C:\DAVID\AAA.INI
C:\DAVID\SELWOOD\FILE.INI
C:\DAVID\ZZZ.INI

because a sorted list sorts by
ascending character position and
does not take the strings’ length
into account.

When all the files have been
checked in the current search
directory, a flag is tested to see if
sub-directories also need to be
searched. If so, a temporary sorted
list of all the directories in the
current directory is created. This
list is then iterated through.

For each directory identified, we
call the Search_Directory proce-
dure, so that the newly identified
directory is also searched, and so
on to the bottom of the directory
tree: this is the recursive part of the
algorithm.

Conclusion
This simple, but useful, example
shows how using recursive tech-
niques can accomplish a lot of
work in surprisingly few lines of
code and also the benefits of using
object orientation.

David Selwood holds a degree in
Computing and has recently
moved from the world of Unix
M-Technology (working in recur-
sive techniques and artificial
intelligence) to Delphi. He works
as an analyst/programmer for
BURNS Open Systems, who
specialise in EDI.

procedure Test_FileList;
var
 FileList: TFileList;
begin
 {Build a list of *.ini files in the Windows directory and its sub-directories}
 FileList:= TFileList.Create(’C:\Windows*.ini’,True);
 try
 {Copy the list of files found to a ListBox}
 ListBox1.Items.Assign(FileList.Files_Found);
 finally
 {Finished with FileList object so free it}
 FileList.Free;
 end;
end;

unit Filelist;
interface
uses Classes,SysUtils,Controls,Forms;
type
 TFileList = Class(TObject)
 private
 File_Mask: string;
 Sub_Directories: boolean;
 procedure Search_Directory(
 const Directory_FileMask: string);
 procedure Found_File_Dir(const SearchRec: TSearchRec;
 FileDir_List: TStringList);
 public
 Files_Found: TStringList;
 constructor Create(const Directory_FileMask: string;
 const Sub_Dirs: boolean);
 destructor Destroy; override;
 end; { TFileList }
implementation
{$I+} {make all run-time I/O errors into exceptions}
constructor TFileList.Create(const Directory_FileMask:
 string; const Sub_Dirs: boolean);
var Old_Screen_Cursor: TCursor;
begin
 inherited Create; {Execute the ancestor constructor}
 Old_Screen_Cursor:= Screen.Cursor;
 Screen.Cursor:= crHourGlass;
 Application.ProcessMessages;
 try
 Files_Found:= TStringList.Create;
 Files_Found.Sorted:= False;
 File_Mask:= ExtractFileName(Directory_FileMask);
 Sub_Directories:= Sub_Dirs;
 Search_Directory (Directory_FileMask);
 finally
 Screen.Cursor:= Old_Screen_Cursor;
 end;
end; {Create}
destructor TFileList.Destroy;
begin
 Files_Found.Free;
 inherited Destroy; {Execute the ancestor constructor}
end; {Destroy}
procedure TFileList.Search_Directory(
 const Directory_FileMask: string);
var

 SearchRec : TSearchRec;
 Directory : string;
 FilesDirsFound :TStringList;
 c1 : integer;
begin
 Directory:= ExtractFilePath(Directory_FileMask);
 FilesDirsFound:= TStringList.Create;
 FilesDirsFound.Sorted:= True;
 FilesDirsFound.Duplicates:= dupError;
 try
 {Build list of files but not directories in current diry}
 if FindFirst(Directory_FileMask,
 faAnyFile-faDirectory, SearchRec) = 0 then begin
 Found_File_Dir(SearchRec,FilesDirsFound);
 while (FindNext(SearchRec) = 0) do
 Found_File_Dir(SearchRec,FilesDirsFound);
 end;
 FindClose(SearchRec);
 {Now copy list of sorted files found onto
 public list of unsorted files}
 for c1:= 0 to FilesDirsFound.Count-1 do
 Files_Found.Add(Directory + FilesDirsFound[c1]);
 {Now start checking the sub-directories}
 if Sub_Directories then begin
 FilesDirsFound.Clear;
 if FindFirst(Directory + ’*.*’,
 faDirectory, SearchRec) = 0 then begin
 Found_File_Dir(SearchRec,FilesDirsFound);
 while (FindNext(SearchRec) = 0) do
 Found_File_Dir(SearchRec,FilesDirsFound);
 end;
 FindClose(SearchRec);
 for c1:= 0 to FilesDirsFound.Count-1 do
 Search_Directory(
 Directory + FilesDirsFound[c1] + ’\’ + File_Mask);
 end; {if Sub_Directories}
 finally
 FilesDirsFound.Free;
 end;
end; {Search_Directory}
procedure TFileList. Found_File_Dir(const SearchRec:
 TSearchRec; FileDir_List: TStringList);
begin
 if ((SearchRec.Name<>’.’) and (SearchRec.Name<>’..’)) then
 FileDir_List.Add(SearchRec.Name)
end; {Found_File}
end.

➤ Listing 3

➤ Listing 2

October 1996 The Delphi Magazine 33

	Deleting A Directory Tree
	Searching For Files
	Conclusion

